2021 Proceedings of the EDSIG Conference ISSN 2473-4901
Washington DC v7 n5507

A Full-stack Platform for
Teaching Web Application Security

Zhouzhou Li
zli2@semo.edu

Ethan Chou
echouls@semo.edu

The Deparment of Computer Science
Southeast Missouri State University
Cape Girardeau, MO 63701, U.S.

Charles McAllister
cdmcallister@semo.edu
The Deparment of Computer Science
Southeast Missouri State University
Cape Girardeau, MO 63701, U.S.

Abstract

Web application security is a core issue that must be addressed in cybersecurity degree programs to
adequately prepare students for leadership in industry. To teach a “Web Application Security” course, a
good exercise platform that can cover the context of Web application is crucial to the learning outcomes.
Unfortunately, existing platforms cannot satisfy both cost and efficiency requirements. In this paper, a
cost-effective and easy-to-use full-stack Web application platform, ESP32-CAM, is introduced to the
course, which is an Internet of Things device with a built-in face recognition Web App. Our major
contribution in this paper includes the thoughtful design of an exercise series around the platform, which
can provide more hands-on practice in the class, strengthen students’ practical skills, and further inspire
the students’ learning interests on a matured technique such as Web applications. Furthermore, through
this platform students can explore the cutting-edge technologies in their class projects or capstone
project, e.g., “transfer learning” to extend the face recognition to emotion recognition or generative
adversarial network to fool the Artificial Intelligence model, which will greatly involve students in
academic research.

Keywords: Web Application Security, Internet of Things, Artificial Intelligence, Reverse Engineering,
Penetration Testing, Secure Software Development.

1. INTRODUCTION engineering background can solve some technical
challenges by using his/her World Wide Web
(WWW, or just Web) browser to search the
Internet for hints or answers. The Web is a critical
application for the Internet. Due to its core role
played on the Internet, Web application’s security
is naturally a significant issue that needs to be

According to International Telecommunication
Union [1], by 2019, 53.6% of the world
population had stable Internet access and
enjoyed the wealth of information. With the
Internet, a user who has no technical or

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 1
https://proc.iscap.info; https://iscap.info

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

addressed in the industry and in academic
establishments.

In current usage, the Web becomes a de facto
standard for Internet. Other Internet applications
(such as email, instant messaging, interactive
game, file transfer, cloud storage, etc.) either
build themselves upon Web or provide their Web
version of solutions. Fig. 1 shows the context of
Web application, where it depends on the lower-
level Internet protocols and supports other
Internet applications. Every component in this
figure can potentially impact the security.
Therefore, the Web Application Security should
cover all.

Unfortunately, considering both cost and
efficiency, it is difficult to find a suitable platform
providing full-stack protocols for students to
exercise during course study. The major concerns
include:

= Only opening the (Web) application layer for
Cybersecurity students to attack. No details
for the implementation of the lower layers.
Not to mention their vulnerabilities.

= Only provide an over simplified Web layer for
Cybersecurity students to attack. Seemingly
not a real system.

= Not free if the user wants to experience the
advanced functionalities.

- ™
Other apps

Web app]

>

J

Transport Layer

Network Layer
Link Layer

Physical Layer

p J

Fig. 1. The Context of Web App Security

A good platform for students to practice Web
application security but limiting the impact to the
real networks need to be well designed.

The remainder of this paper is organized as
follows. In the ‘Literature Review’ section, we

review the current courseware or labs designed
for teaching Web App Security. In the
‘Background’ section, the Internet of Things (IoT)
device-based face recognition Web platform will
be introduced, and its advantages will be
explained. In the ‘Teaching Objectives’ section,
the teaching goals of the Web App Security course
will be discussed. Then, a list of exercises to
support the teaching goal through the platform
will be provided. In section ‘Student Feedback’,
students’ feedback proved the ESP32-CAM a good
platform for learning ‘Web App Security’ will be
given. With the ‘Outcomes’ section providing
quantitative evaluation on the learning effect. A
summary of what areas can be improved, as well
as a conclusion of discussion will be provided in
“Conclusions and Future Work” section.

2. LITERATURE REVIEW

Currently, the most popular platform for teaching
Web App Security is Virtual Machine [2][3][4][5],
though in [6], the authors still tried using
traditional high-performance Cyber Defender Lab.
The advantage of using a VM platform is obvious:
cost-effective. In [7], a Raspberry Pi 3 based
platform was proposed, which also had the cost
advantage (cost was about $234) but provided a
real platform to the students. A corresponding
survey was conducted in a course. The result
showed that most students prefer the real-world
Web applications for them to attack and defend;
they are tired of practicing in a virtual
environment.

A Raspberry Pi can be treated as a minicomputer.
Most IoT devices are even smaller and less
expensive. The insight here is, if we can move the
Web App Security teaching platform to a IoT
device, we may achieve further cost-saving.

Fortunately, we found one. And its performance
is even better.

3. BACKGROUND

ESP32-CAM (Fig .2) is an IoT hardware-based
Web App providing quick, accurate and cost-
effective “Face Recognition”. A typical use
case/scenario is given below:

= New users should enroll their face image to
the Web App first. A unique ID is then
assigned to that face. After that, the face
image is saved in the system and the user
cannot access it anymore.

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 2

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

= The security department places the ESP32-
CAM hardware to the gate/door they want to
implement access control by face recognition.

= A user stands in front of the ESP32-CAM
hardware. The Web App analyzes the input,
i.e., the face image, to generate landmarks
for that face and search the image database
for matched face. If found, access privilege
will be given to the user; if not, access will be
denied.

S
- IUBIN ‘
Dl!Jg] 1

Fig. 2. ESP32-CAM Board (Front & Back Views)

The cost of the ESP32-CAM hardware is about
$8.00. Considering the peripheral cable and
bridge device, the overall cost of one set of
exercise hardware is just about $15.00.

And the Web App is ready, within 1 minute, a user
can deploy it. Furthermore, it can cold start in 10
seconds, which is much faster than all the known
platforms. Not to mention that it is 100% open-
source. The instructor doesn’t need to verify the
potential Intellectual Property issue. And it is easy
to maintain and expand, after all, only 4 source
files need to be maintained with two of them are
header files.

Besides the reasonable price and good
performance, another attractive feature this Web
App can provide is the integration of IoT and
Artificial Intelligence (AI) technologies.

Internet of Things

IoT is an emerging technology. Though many
students have shown their interests in IoT, a
course about IoT fundamentals is often still only
offered as a course elective in degree programs.
If exercises in this Web App Security course can
be provided by using an IoT device, then state-
of-the-art and valuable content can be added to
this old-technique course. It is not necessary for
students to take a full IoT course to touch on the
embedded hardware as well as wireless
communication.

This IoT hardware-based platform is also good for
students to conduct edge computing research,
which is a hot subarea of cloud computing, by
focusing on customized computing to provide
prompt responses and accurate results. The Al
model integrated in ESP32-CAM was trained by a
dataset with different faces. Its generality was
already verified. However, when it is applied to a
specific face, its recognition accuracy and speed
are not perfect, i.e., there is room for new
research to improve. In one of the capstone
projects, one student group realized the
sensitivity of the ESP32-CAM AI model somehow
was impacted by personal face features.

Artificial Intelligence

As aforementioned, an AI model is integrated in
the ESP32-CAM Web application [8]. This
generation of Al is an emerging technology, which
is based on supervised and unsupervised machine
learning. And face recognition belongs to the
supervised learning. Most CS/ECE departments
already offered Machine Learning/Al courses.
Consequently, this course for Web App Security
can offer hands-on opportunities for students to
comprehensively utilize what they have learned
from the ML/AI courses. Due to the interactive
character of this AI model, students showed their
great interests to the face recognition application.

This Al-integrated platform is also good for
students to conduct transfer learning research,
which does not change the existing Al model, but
builds the new learning framework on top of the
existing model. For example, enhance the face
recognition to emotion recognition.

Furthermore, with the prevalence of AI models,
model-based attacks emerge, which makes the
traditional code-based countermeasures
outdated. Students will get a chance to learn the
newest research in data poisoning, data
manipulation, and Generative Adversarial
Network.

4. TEACHING OBJECTIVES

After competing this course, students will be able
to:

Understand HTML and front-end code.
Describe the components of a Web App.
Deploy a Web App to a specific device.
Conduct preliminary reverse engineering &
re-engineering.

5. Understand the Software Maturity Model with
concentration on Security.

pPLuNE

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 3

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

6. Describe different vulnerabilities and their
root causes.

7. Conduct pen-testing or attacking by code
review, auto vulnerability scanning, and fuzz
testing.

8. Describe functional and
requirements and their
security requirements.

9. Conduct threat modeling.

10. Follow secure coding standards to write and
review code.

11. Describe the function of a certificate. Apply
certificates in Web Apps.

12. Apply Public Key Cryptography in Web Apps.

13. Describe the data impact to Web App
Security.

non-functional
relationships to

These objectives are the result of decomposing
the high-level outcomes of this course into small
technical areas and integrating practical
skills/tools into these areas. The high-level
outcomes source from the NSA CAE-CDE
designation requirements.

5. EXERCISES

An attempt to fully utilize the proposed platform
was made by designing a variety of exercises for
students to experience the different aspects of
the Web Application Security. In total, 15
independent exercises were prepared, but
together, can provide a systematic layout.

1. The first two exercises are related to user
experience - before attacking or defending a
Web App, the students will need to get
familiar with it.

2. The next six exercises cover how to attack a
Web App and fundamental skills and tools.
Among them, four exercises are related to
finding the vulnerabilities of the Web App by

studying the code. Followed are auto
vulnerability scanning & fuzz testing
exercises.

3. After the students understand how to attack
a Web App, countermeasures (defending
skills and tools) can be introduced. Four
exercises related to Secure Software
Development Life Cycle and one exercise
related to symmetric encryption are provided
in this part to students.

4. The next two exercises address the non-code
vulnerabilities caused by AI models.

A corresponding optional project was designed to
respond to the requests from a few of students,
who would like to do correlated research in this

Web App Security course, an independent study,
or in their capstone course.

As a summary, here is the list of hardware,
Integrated Development Environment (IDE), and
software used in the exercises:

Hardware:

= a ESP32-CAM IoT board (including a mini camera)
= a FTDI Mini USB to TTL Serial converter

= a mini-USB cable

»= accessories (glasses, hat, makeup, etc.)

= selfies.

IDE:

= Arduino IDE with the ESP32 add-on.
Software:

= HxD Hex Editor

= Gunzip

= Cscope

= Vi

= Wireshark

= OWASP ZAP
*= Microsoft STRIDE
= gcc
Fig. 3. Resources Used in Exercises

Deploy the face recognition Web application
to an ESP32-CAM IoT board

Students will need to learn how to deploy a Web
application to an IoT device.

1. The application code is ready in Arduino IDE
after installing the appropriate ESP32 board’s
add-on.

2. Students need to connect the ESP32-CAM
board to a host (where Arduino IDE is
running), then cross-compile the code in
Arduino and download the executable from
the host to the board.

3. After reset, the board is up with the face
recognition Web application ready.

4. Access a pre-defined URL to reach the
application’s control panel, where a user can
enroll a face and see if the board can
recognize it later when the same face appears
in front of the camera of the ESP32-CAM
board.

This is a team project with 4 or 5 members in the
team. Exercise hardware includes an ESP32-CAM
board, an FTDI Mini USB to TTL Serial converter,
and a mini-USB cable.

For most of the students, this is the first time they
touch an IoT device or an embedded system.
Students are curious and worried. A clear

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 4

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

instruction manual can help them quickly
accomplish this exercise so that they will build
their confidence on learning a new
technique/skill/method.

Through this exercise, students can explore
fundamentals of IoT development and application
deployment, and they can identify the basic
components of a Web application, which could be
deployed on any hardware. They have learned
Web application development concepts in their
freshman or sophomore year but deploying a Web
application to independent physical hardware is
the first time for most of them.

Furthermore, this is a good chance for students
to experience IoT in a Web App Security course.

Fool the AI model

The AI model integrated to the Web application
can provide quick and accurate face recognition.
However, it cannot guarantee 100% correctness.
This exercise encourages the students to stably
reproduce false positive and false negative
situations, which will inspire the students to think
about the deeper logic in the AI model though it
appears a black box so far. This is a very
whimsical yet important exercise, and how
creative students are can be observed. Some
students tried making funny faces to cause false
negative cases. Others tried wearing glasses,
hats, or even a fake beard to fool the Al model,
like a fashion show. Creatively, some students
directly used a printed photo and successfully
made the Web application believe this is the
enrolled person. Students can sample the
problem the AI model has, but do not know why.
Having the question not directly answered here
will keep students’ curiosity piqued until later
they are asked to get hints from the papers about
Data Manipulation, Data Poisoning, and
Generative Adversarial Networks. This is a good
chance for students to experience Al in a Web App
Security course.

Reverse Engineering

Reverse engineering is an important practical skill
that can be used in attacking a system or pen-
testing. Through reading and analyzing the
source code or binary program, the attacker or
tester can infer the original design ideas and
architecture. In this designed exercise students
will be asked to determine the design of the face
recognition Web application from the published C
code. Either the architecture or the pseudo code
of the Web application should be submitted.

There will be several challenges for students to
overcome. The first one is the library code, which

was not published by the application developers.
Only four C source files were published, but the
most fundamental functions were provided by the
libraries with (debugging) symbols stripped off.
Students will need either read the assembly code
(not recommended to them due to the difficulty
level) or perform a Google search for the source
code of the libraries.

Re-engineering

The ESP32-CAM Web App provided a complicated
control panel to configure the attached camera
and the face recognition parameters. However,
half of these parameters are too professional to
be changed by most of the students. Therefore,
simplifying the control panel can reduce the
confusion and distraction on the face recognition
application itself. Fig. 4 shows the simplified
version of the control panel, which is much
simple.

— Toggle OV2640 settings

Resolution

Quality
Brightness

CIF(400x296)

Contrast
Saturation
Color Bar

Face Detection

Face Recognition i)

Get Still Start Stream

Fig. 4. Simplified Control Panel of the Web App

To accomplish this exercise, students will need to
overcome several small challenges:

1. Understand the original HTML code and
identify the unnecessary elements on the
HTML page. Because several elements have
dependency relationships, before deleting
one unnecessary element, students must first
resolve its dependencies.

2. Because the original HTML page was
compressed then saved in the ESP32-CAM
flash, to replace it with the simplified page,
students will need to know how to convert
their HTML code to .gzip format.

3. Also, the compressed HTML page is saved as
an array of hex bytes in ESP32-CAM.

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 5

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

Students will need to convert the raw bytes
of the .gzip file to a hex byte array. To
complete this task, students must master one
Hex Editor.

These are practical skills related to Web App
Security.

Determine vulnerabilities of the Web App
Before taking this course, the students already
had a solid foundation in Cybersecurity from
earlier courses. Thus, it is easy for them to detect
several vulnerabilities of the face recognition Web
application. However, to provide full coverage,
they will need to have a systematic view and
comprehensively utilize their knowledge, skill,
and inference capability. This exercise will provide
a record of how many vulnerabilities they can find
without further education. After they finish this
course study, they can retry this exercise to
identify what additional vulnerabilities they can
find.

Fix the Buffer Overflow vulnerability
demonstrated by a video

Buffer Overflow once was a top vulnerability. And
the original code of the face recognition App
suffered from this vulnerability. A recorded video
can show how the attack vector
“http://{IP}/control?var=framesize&val=512"
could corrupt the face recognition Web application
because the variable used to save the ‘framesize’
parameter is just an 8-bit integer. This attack
vector was not determined through the auto
vulnerability scan nor the reverse engineering
because its URL is a hidden one. When a user
changes a parameter through the control panel,
the front-end code will generate a similar but
hidden URL to update the parameter saved at the
Web server. To expose the hidden URL, students
will need to understand the front-end code (i.e.,
the HTML page), use Wireshark to capture the
network traffic for analysis, or understand the
back-end code.

At minimum, a student will need to master one of
the following skills before they can find the Buffer
Overflow vulnerability:

= Efficiently trace the front-end code in HTML
and Java Script.

= Know how to filter network traffic by
Wireshark and narrow down the packets of
interest.

= Efficiently trace the back-end code in C and
C++.

Unfortunately, it is not easy, but students will
realize tools alone are not the most important

factor in Web App Security. Both understanding
the target’s code and using automatic tools are
crucial.

Auto Vulnerability Scanning & Fixing

There are many automatic scan tools for Web App
vulnerabilities, which can greatly save the
attacker or tester's effort during target
vulnerability scanning. The Open Web Application
Security Project (OWASP) Zed Attack Proxy (ZAP)
[9] is a good one for Web App attacking or
testing. Using it, students can scan the
vulnerabilities of the face recognition Web App in
an automatic style. Based on hints provided by
the ZAP report, students will need to explore the
back-end code for the best place to put the fix.

Fuzz Testing

Fuzz testing or Fuzzing is an automated software
testing technique that involves providing invalid,
unexpected, or random data as inputs to a
computer program [10]. Its purpose is to verify
the reliability of the target, and it can verify the
coverage of the implemented code. It is a good
tool for Web App attacking or testing. In previous
exercises, the ‘control’ hidden URL has been
exposed. Thus, students can direct OWASP ZAP
to feed a wide range of inputs to the face
recognition Web App to see if some inputs can
trigger exceptions to the App. Students should be
able to experience automated testing and realize
its efficiency.

Secure Software Development Life Cycle
(SDLC)

To prevent vulnerabilities from being integrated
into the Web App from scratch, the secure
development process is crucial, which can
monitor the quality of Web App development. And
security is just one aspect of the product quality
metrics. Thus, knowing the impacts from non-
security requirement is also important. The goal
of this exercise is to give the students a
systematic view about the security. OWASP
Software Assurance Maturity Model (SAMM)
allows teams and developers to assess,
formulate, and implement strategies for better
security which can be easily integrated into an
existing organizational Software Development
Life Cycle (SDLC). This is especially important
when students run/join software companies in the
future.

Students are expected to read the OWASP SAMM
Quick Start Guide [11].

Secure Software Design
Producing secure software requires conducting
secure practices as early in the SDLC as possible.

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 6

https://proc.iscap/
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Random_data
https://en.wikipedia.org/wiki/Computer_program

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

Design is the next phase after the customer
requirement analysis. At this phase, platform,
environment, constraints, components, and their
relationships as well as interactions are decided.
Integrating security consideration at this phase
can greatly reduce software vulnerabilities.
Therefore, it can avoid the most cost for finding
and fixing the vulnerabilities in downstream. In
this exercise, students will need to analyze the
security requirements of the Web App, then
propose an architecture (update) and detail the
interactions between the components in the
architecture. Both sunny-day and rainy-day
scenarios should be performed to exclude
potential vulnerabilities.

Sequence diagrams that focus on different
aspects of security should be submitted as the
result of Secure Software Design.

Threat Modeling

Threat modeling is a powerful tool, which can be
used to determine the attack surface of the Web
App. It is useful for

= Ensuring the design
security objectives.

= Making trade-offs and prioritizing efforts

= Reducing the risk of security issues during
development and operation.

complements the

In this exercise, students will try Microsoft's
threat modeling framework, STRIDE (Spoofing,
Tampering, Repudiation, Information, DoS,
Elevation of privilege) to determine the attack
surface of their Web App.

Best Coding Practice

Best coding practice is a kind of accumulation of
experience from existing events. Though it
cannot defeat all attacking attempts, it can fix
most severe vulnerabilities and mitigate the
attacking consequence. Students are expected
to go through a check list (i.e., OWASP Secure
Coding Practices Quick Reference Guide [12])
to review and evaluate the overall security of
their code.

Asymmetric Cryptography

To protect the confidentiality of the Web traffic,
encryption should be conducted. Usually,
asymmetric cryptography is used to generate
public and private keys for symmetric key and
signature distribution. The core part of the
asymmetric cryptography is the difficult
mathematic problem, such as the big integer
factoring problem.

A Fermat Sieve-based 64-bit C program was
given to students to demonstrate the big integer

factoring algorithm as well as the time
consumption. Because the program cannot
handle numbers larger than 64 bits, the students
are expected to port the logic to a Python
program, which can handle larger numbers.

Data Manipulation & Poisoning

During training, machine learning algorithms

search for the most accessible pattern that

correlates pixels to labels. But when a common

yet trivial pattern is given a higher weight, a noise

or a small piece of polluted data could cause the

wrong judgement of the trained AI model.

Students will need to read two articles to realize

and understand the non-code impact to Web App

Security:

1. Machine learning adversarial attacks are a
ticking time bomb [13].

2. Adversarial machine learning: The
underrated threat of data poisoning [14].

Generative Adversarial Network

Generative modeling discovers and learns the
patterns in input data in such a way that the
model can be used to generate new examples
that plausibly could have been drawn from the
original dataset. In a GAN, two sub-models (the
generator model for new examples and the
discriminator model for classification) are trained
together adversarial, until the discriminator
model is fooled about half the time, meaning the
generator model is generating plausible
examples. Students will need to read one article
to realize and understand the GANs’ impact to
Web App Security: A Gentle Introduction to
Generative Adversarial Networks (GANs) [15].

Capstone Projects or Research Directions
Based on the compact ESP32-CAM IoT hardware
and the integrated face recognition AI model,
there are three capstone projects, or three
research directions suggested for students who
want to try different things beyond this course
study.

= Transfer Learning [16] - the AI model will
generate five landmarks (points) for each
input/face image. The face recognition Web
App will compare enrolled one with the
current input/face image to evaluate their
similarity by calculating a correlation
coefficient between the landmarks. If the
landmarks are used as the starting point for
further emotion recognition, the function of
the Web App is enhanced while leaving the
integrated AI model intact. Emotional
information is a supplement to the face
information, which will enhance the security

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 7

https://proc.iscap/

2021 Proceedings of the EDSIG Conference

ISSN 2473-4901

Washington DC v7 n5507
when they are used in access control and 7. OUTCOMES
authentication/authorization scenarios.

Table 1 shows the Ilearning outcomes

= Edge Computing [17] - the face recognition
AI model was trained by public datasets.
However, different people have different
facial features. When this AI model is
deployed in a specific target environment, its
application context may be limited to a small
group of people. Then, one thing perhaps
may be enhanced: customize the AI model for
the target environment to provide quicker
and more accurate response. This direction
belongs to the scope of Edge Computing.

= Data Manipulation, Data Poisoning, &
GAN [18][19]- Examples have been seen
that adding some trivial noise to the input
image can mislead the AI model. Due to the
black-box character of the AI model, these
are hard to explain. Moreover, the traditional
countermeasures for code-based
vulnerabilities cannot be reused for the
model-based (or data-based) vulnerabilities.
Evaluating the impact and finding a solution
is a good project topic or research direction.

6. STUDENT FEEDBACK

In Spring 2021, one of the authors delivered this
proposed platform-based courseware to 37 senior
Cybersecurity undergraduate students in the
CY410 Web App Security online course. CY410 is
a major core course. Its prerequisites include
“Python Programming”, “Java Programming”,
“Introduction to Cybersecurity”, “Web
Development”, “Data Protocol Security”, and
“Information Security in System Administration”.
At the end of the semester, 59% students
provided their feedbacks to CY410. Overall, the
feedbacks are positive, and the average ‘grade’
the students gave to the instructor was 4.55 (the
program’s average was 4.27 and the school’s
average was 4.29). The students also realized the
depth of this course because of so many tricky
hands-on exercises. Though they never admitted
it. What the students complained most was they
couldn't get enough hardware for the team
projects. Only one set of devices were given to a
project team. Due to the COVID-19 pandemic,
projects or teamwork is not sufficiently organized.
Each team member individually wanted to use the
hardware. Therefore, assigning a set of
equipment to each student rather than each
project team may further improve their
feedbacks.

corresponding to the teaching objectives in
section 3.

8. CONCLUSIONS AND FUTURE WORK

The ESP32-CAM IoT and Al platform provides rich
features from almost every aspect for students to
experience Web App Security and attracts
students to touch the cutting-edge research in
IoT, Edge Computing, and Transfer Learning.
Totally it can support more than 16 corresponding
hands-on exercises. In the future, we plan to
connect database to this platform or implement a
‘little” DB in it. A prototyping has been done. We
will provide more details in our future paper.
Furthermore, at a cost of $15/student, this IoT
platform provides a cost-effective solution for
teaching Web App Security, which is the lowest-
cost platform so far to our best knowledge. This
means the instructors can offer sufficient
hardware to the students. The teaching effect
showed students gave very positive feedback to
the new teaching/exercise platform. We expect
further improvement in the student feedback
(currently 4.55) when we equip every student
with one set of the device.

9. REFERENCES

[1] Buyannemekh, B., & Chen, T. (2021). Digital
governance in Mongolia and Taiwan: A
gender perspective. Information Polity,
26(2), 193-210.

[2] Chen, L. C., & Tao, L. (2011, July). Teaching
web security using portable virtual labs. In
2011 IEEE 11th International Conference on
Advanced Learning Technologies (pp. 491-
495). IEEE.

[3] Schweitzer, D., & Boleng, J. (2009).
Designing web labs for teaching security
concepts. Journal of Computing Sciences in
Colleges, 25(2), 39-45.

[4] Chen, L., Tao, L., Li, X., & Lin, C. (2010). A
tool for teaching web application security. In
Proceedings of the 14th Colloquium for
Information Systems Security Education (pp.
17-24).

[5] Liegle, 1. O., & Meso, P. N. (2006). Evaluation
of a virtual lab environment for teaching web
application development. Director, 7.

[6] Yu, H., Liao, W., Yuan, X., & Xu, J. (2006,
March). Teaching a web security course to

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 8

https://proc.iscap/

2021 Proceedings of the EDSIG Conference
Washington DC

ISSN 2473-4901
v7 n5507

practice information assurance. In
Proceedings of the 37th SIGCSE technical
symposium on Computer science education
(pp. 12-16).

[7] Oh, S. K., Stickney, N., Hawthorne, D., &
Matthews, S. J. (2020, October). Teaching
Web-Attacks on a Raspberry Pi Cyber Range.
In Proceedings of the 21st Annual Conference
on Information Technology Education (pp.
324-329).

[8] zhang, K., Zhang, Z., Li, Z., & Qiao, Y.
(2016). Joint face detection and alignment
using multitask cascaded convolutional
networks. IEEE Signal Processing Letters,
23(10), 1499-1503

[9] Wikipedia contributors. (2021, May 9).
OWASP ZAP. In Wikipedia, The Free
Encyclopedia. Retrieved 02:12, June 19,
2021, from
https://en.wikipedia.org/w/index.php?title=
OWASP_ZAP&o0ldid=1022316463

[10] Wikipedia contributors. (2021, May 21).
Fuzzing. In Wikipedia, The Free Encyclopedia.
Retrieved 02:05, June 19, 2021, from
https://en.wikipedia.org/w/index.php?title=F
uzzing&oldid=1024357049

[11] OWASP SAMM Quick Start Guide. From
https://github.com/OWASP/samm/raw/mast
er/Supporting%20Resources/v1.5/Final/SAM
M_Quick_Start_V1-5_FINAL.pdf

[12] OWASP Secure Coding Practices Quick
Reference Guide. From
https://owasp.org/www-pdf-
archive/OWASP_SCP_Quick_Reference_Guid
e_v2.pdf

[13] Machine learning adversarial attacks are a
ticking time bomb. From
https://bdtechtalks.com/2020/12/16/machin
e-learning-adversarial-attacks-against-
machine-learning-time-bomb/

[14] Adversarial machine Ilearning: The
underrated threat of data poisoning. From
https://bdtechtalks.com/2021/04/05/machin
e-learning-data-poisoning-2/

[15] A Gentle Introduction to Generative
Adversarial Networks (GANSs). From
https://machinelearningmastery.com/what-
are-generative-adversarial-networks-gan

[16] Wikipedia contributors. (2021, May 10).
Transfer learning. In Wikipedia, The Free
Encyclopedia. Retrieved 17:41, June 19,
2021, from
https://en.wikipedia.org/w/index.php?title=
Transfer_learning&oldid=1022394104

[17] Wikipedia contributors. (2021, June 6). Edge
computing. In Wikipedia, The Free
Encyclopedia. Retrieved 17:45, June 19,
2021, from
https://en.wikipedia.org/w/index.php?title=
Edge_computing&oldid=1027237845

[18] Chen, X., Liu, C., Li, B., Lu, K., & Song, D.
(2017). Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv
preprint arXiv:1712.05526.

[19] Ledig, C., Theis, L., Huszar, F., Caballero, J.,
Cunningham, A., Acosta, A., ... & Shi, W.
(2017). Photo-realistic single image super-
resolution using a generative adversarial
network. In Proceedings of the IEEE
conference on computer vision and pattern
recognition (pp. 4681-4690)

@2021 ISCAP (Information Systems and Computing Academic Professionals

https://proc.iscap.info; https://iscap.info

Page 9

https://proc.iscap/
https://en.wikipedia.org/w/index.php?title=OWASP_ZAP&oldid=1022316463
https://en.wikipedia.org/w/index.php?title=OWASP_ZAP&oldid=1022316463
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1024357049
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1024357049
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=1022394104
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=1022394104
https://en.wikipedia.org/w/index.php?title=Edge_computing&oldid=1027237845
https://en.wikipedia.org/w/index.php?title=Edge_computing&oldid=1027237845

2021 Proceedings of the EDSIG Conference

Washington DC

ISSN 2473-4901
v7 n5507

Appendices and Annexures

Objective ID | Objective Description Pass Rate | Exercise(s)
(grade > 4/5)

1 Understand HTML and front-end code. 86.5% Re-engineering

Describe the components of a Web App. 100% Deploy App &
Reverse
Engineering

3 Deploy a Web App to a specific device. 100% Deploy App

4 Conduct preliminary reverse engineering & re- 86.5% Reverse
engineering. Engineering &

Re-engineering

5 Understand the Software Maturity Model with 100% Secure SDLC

concentration on Security. (Read OWASP
SAMM)

6 Describe different vulnerabilities and their root 89.2% Determine

causes. vulnerabilities &
Fix Buffer
Overflow

7 Conduct pen-testing or attacking by code 91.9% Auto scanning &
review, auto vulnerability scanning, and fuzz Fuzz testing
testing.

8 Describe functional and non-functional 97.3% Secure software
requirements and their relationships to security design
requirements.

9 Conduct threat modeling. 81.1% Threat Modeling

10 Follow secure coding standards to write and 91.9% Best Coding
review code. Practice

11 Describe the function of a certificate. Apply N/A N/A
certificates in Web Apps.

12 Apply Public Key Cryptography in Web Apps. Non-graded Asymmetric

Cryptography
13 Describe the data impact to Web App Security. 100% Data
manipulation &
poisoning, and
GAN papers
Table I. Learning Outcomes
@2021 ISCAP (Information Systems and Computing Academic Professionals Page 10

https://proc.iscap.info; https://iscap.info

https://proc.iscap/

