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Abstract  
 
Learning computer programming is a challenging task for most beginners. Demotivation and learned 
helplessness are pretty common. A novel instructional technique that leverages the value -expectancy 
motivational model of student learning was conceptualized b y the author to counter the lack of 

motivation in the introductory class. The result was a frequency adherent scaffolded instructional 
technique called An Assignment A Day (AAAD). Instead of writing an assignment and a lab for each 
module/chapter, students  were asked to complete one assignment a day, not exceeding four 
assignments a week. The assignments were incrementally difficult and had to be done almost every 
day. With the application of AAAD for two consecutive semesters, there was a meaningful improv ement 

in the final grades. This technique, though initially encouraging, created a significant load on the 
instructor in terms of assignments graded and questions answered every day. A natural language 

processing  (NLP) based conversational agent was design ed and integrated with AAAD to counter this 
overload. The idea was simple ï relay commonly asked course questions to an NLP based chatbot  and 
let the instructor handle the complex queries. This integrated system was named Conversational Agent 
Supported Sca ffolded Approach (CASSA). The main contribution of this work is the construction of a 
conversational agent and its integration with AAAD. The conversational agent is currently being assessed 
for overall efficacy, though preliminary results are discussed. T he vision is to create a generic virtual 

assistant  template that can  be re -used across multiple courses to assist instructor s. 
 
Keywords:  Conversational agents,  NLP, introductory programming, pedagogy, value -expectation , 
student procras tination.  
 
 

1.  INTRODUCTION  

 

Computer programming is an arduous learning 
process for most beginners, and high failure rates 
have been reported continuously (Allan & Kolesar, 
1997; Newman, Gatward, & Po ppleton, 1970; 
Bennedsen  & Caspersen, 2007; Sheard & Hagan, 
1998; Watson & Li, 2014 ; Beaubouef & Mason, 

2005; Howles, 2009; Kinnunen & Malmi 2006; 
Mendes et al., 2012 ). Given the complex nature 
of the programming (Kim & Lerch, 1997; Rogalski 
& Samurçay, 1990; Ro bins, Rountree & R ountree, 

2003 ), students frequently get demotivated. 

While teaching multiple introductory 

programming courses over many years, the 
author observed that apart from the complex 
nature of programming, there were other factors 
at play that feed the demotivatio n loop.  Some  
example s are:  

¶ Less tha n desirable instructor presence  

¶ High temporal disengagement with the 
programming activities  

¶ Students internal lack of motivat ion  
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Keeping these factors in mind, and inspired by 

value -expectancy (Keller, 1983) & cognitive load 
theory (Paas, Renkl, & Brünken, 2010; Sweller, 
1988, 1994), a novel instructional technique 

called An Assignment A Day (AAAD) approach 
was designed. Instead of completing a lab and 
assignment per chapter, students were asked to 
complete one simple assignment a day, with a 
cap of four assignments a we ek. Every 
subsequent assignment of a chapter/course built 
on the previous assignment and carried an 

incremental cognitive load  (see Appendix A) . 
Apart from testing students on new concept s, the 
subsequent assignment re used the concepts 
learned/applied in the previous assignment.  The 
approach (Dawar , 2021 ) can be summarized as:  

1.  Students will ideally do one assignment 

per day . 
2.  Opening assignments of the chapter will 

test students on very basic skills  like 
writing a method stub. Subsequent 
assignments will gradually increase in 
complexity keeping in mind the cognitive 
load asserted by the assignment . This 

mechanism is in part based on the study 
conducted by Alexandron et al. (2014) . 

3.  There will not be m ore than four 
assignments per week. Deadlines may  be 
relaxed on a case - to -case basis.  

4.  As an exception, and depending upon the 
cognitive load, an assignment may be 

completed  in two or more days rather 
than a single day.  

 
The technique rests on three central pillars, as 
shown in Figure 1.  

 
Figure 1: AAAD Interventional Technique  

This study aims to address two research 
questions:  
a)  What is the effect of mandatory continuous 

engagement with cognitively germane testing 

on student outcome  and instructor load?  
b)  How can instructor load be minimized while 

maintaining the sanctity of the technique?  
The author could foresee a t least two significant  
issues that cou ld derail the potential acceptability 
of this technique:  

a)  Will the high number of assignments, albeit of 

germane cognitive load, dissuade students 
from participating , thereby compounding the 
very problem the author is trying to tackle , 

i.e. , lack of motivation due to learned 
helplessness? Constant testing has been 
associated with high student anxiety (Kaplan 
et  al ., 2005). An easy way to ma ke students 
dislike programming  is to put them under 
unnecessary s tress (Goold & Rimmer, 2000). 
Strict e nforcement of everyday deadlines 

may easily overwhelm these students. The 
only chance of overcoming this hurdle was 
providing germane load assignments.  

b)  Even if the intervention shows promising 
results with students, what does that mean 
for the instructor load? More assignments 

would naturally elicit more questions, 
requiring additional instructional and tutoring 
presence, and more grading time, besides 
ot her externalities. Massive overload and 
instructor fatigue become apparent. Some 
follow -up questions are warranted . For 
example :  

1.  Is it prudent or even feasible to run a 
potentially beneficial instructional 
intervention while risking instructor 
overload sim ultaneously ? 

2.  If the intervention is proven to be 
beneficial, how can instructor support be 
increased so that the outcome is better 

for students (in terms of motivation) as 
well as the instructor (in terms of course 

load)?   
3.  Do the system and tools required for 

instructor support already exist, or would 
they need to be allocated/constructed?  

4.  Are these support systems course -
specific, or can they be reused within 
courses?   

 
These questions are vast and may need multiple 
solutions at multiple levels. As a preli minary 
solution, a conversational agent or a chatbot is 

proposed to assist the instructor. The essential 
function of this agent is to answer repeatedly 
asked student questions in the course when 
access to the instructor is not available.  

 
The rest of the p aper is structured as follows . 
Section 2 discusses the perceived need for the 

intervention and the conversational agent and 
builds a case for their integration. Section 3 
touches upon the operational aspects of natural 
language processor systems (NLP) and illustrates 
the parts of the conversational agent. Section 4 
discusses the preliminary results for the accuracy 

of the conversational agent.  

Teaching 
Intervention

Continuous 
Practice

Congnitive Load 
Increments

Continuous 
Feedback and 

Resolution
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Section 5 concludes the paper and briefly 

presents the foundations of future research.  
 

2. A Case for Integration o f a 

Conversational Agent With  Scaffolded 
Instructional System  

In this section, justification for building and 
employing the AAAD technique is presented. It is 
then argued that while this might be a good idea 
for student motivation and performance, it can 
overload the instructor who lacks access to 

dedicated resources like graders and tutors. A 
case is then built for the construction and use of 
a conversational agent/chatbot to take some load 
off the instructor while not jeopardizing the 
instructional techni que. The terms conversational 

agent and chatbot are used interchangeably 

throughout the paper.  
 
A Case for AAAD Approach  
Studentsô belief in their success is vital if they are 
to be motivated to learn. There are many causes 
of student demotivation, but the one suspect that 
the author can categorically point towards in their 

classrooms is high cognitive load. Cognitive load 
theory ( Paas, Renkl , & Brünken, 2010 ; Sweller, 
1988, 1994 ) throws light  on the aspects of load 
placed on working memory while a task is being 
executed. Computer programming requires 
balancing numerous interactive tasks  
simultaneously . For example, it  involv es juggling 

numerous details like problem domain, the 

current state of the program, language syntax, 
strategies (Winslow, 1996).  
 
Procrastination is extremely prevalent in students 
studying in a university setup. Some estimates 

suggest that 80 to 95 percen t of students engage 
in procrastination (Steel, 2007).  The longer the 
students wait to turn in the assignment, the 
worse their grades become (Kim & Seo, 2015).  
Procrastination has also been linked to higher 
levels of anxiety, stress, and fatigue ( Beutel  et 
al., 2016) . After having taught multiple 

programming courses over multiple years, the 
author encountered similar patterns.  
 

AAAD was designed k eeping these factors  in 
mind. The intervention made continuous targeted 
interaction between the material and st udents ï 
somewhat mandatory. It was opined that this 

would:  
 
¶ Establish a clear study pattern for students  to 

counter procrastination.   
¶ Potentially improve studentôs expectations 

owing to  germane cognitive loads . 

¶ Make them practice programming every 

almost every  day. The inspiration for this 
operation came from strong evidence 
suggested  by psychological studies ( Brown & 

Bennett, 2002; Glover, Ronning  & Bruning, 
1990 ; Moors & De Houwer, 2006 ) done on 
variable student populations. Constant 
practice can improve student motivation and 
make them want to learn more (Moss  & Case, 
2001).  

 

The technique AAAD was administered to two 
experimental groups (E1 and E2), and the study 
was spread  over three  semesters. The control 
group  (C1)  was asked to complete  one 
assignment and one lab work per week. Q uizzes 
were given at the end of every chapter.  This is 

the usual  approach followed at our institution for 
introdu ctory programming classes. E1 and E2 
were  taught with  the  interventional approach  for 
the subsequent two semesters.  
 
Both experimental groups were asked to 
complete  37 assignments over the course of 12  

weeks.  10 days were meant for chapter quizzes 
and exams. Other details like student population 
comparison of the groups, determination of 
germane load mechanism can be found in 
(Dawar , 2021 ).  
 
All groups were administered the same module 

quizzes  and final exam , and their average scores 
were compared to measure the impact of this  

tech nique on overall grades if any.  
 

Module  
C1 (20 

students)  
E1 (22 

students)  
E2 (20 

students)  

1 71% (3.72)  75% (2.05)  75% (2.22) 

2 79% (2.08)  71% (2.33)  78% (3.32) 

3 73% (3.19)  73% (2.55)  73% (3.68) 

4 62% (3.72)  66% (2.49)  71% (3.01) 

5 74% (4.26)  75% (2.44)  75% (3.10) 

6 67% (3.41)  67% (1.78)  76% (1.95) 

7 56% (3.48)  65% (2.50)  61% (3.30) 

Average  68% (3.40)  70% (2.30)  73% (2.94) 
 

Table 1: M ean grade points (with standard 
deviations) scored on the quiz by all groups  

As shown in Table 1, seven chapters/modules 
were taught to all the groups. A quiz was given at 

the end of every chapter. Columns C1, C2, and 
E2 depict the average class scores (with standard 
deviations) of the quiz. The final exam consisted 
of a quiz that covered all seven modules, and a 
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Java problem. Table 2 shows the average 

achieved by the class in the final exam.  
Though  there was no significant difference 
between module quiz scores  (see Table 1) , the 

experimental group s performed much better in 
the fina l exam  (Table 2) . Even though the gains 
in the final quiz are marginal, the experimental 
group s outpe rformed the control group by 20 
percentage points or more  in JAVA program 
writing. The overall cumulative improvement in 
the final exam mean score was 16%  and 19% for 

E1 and E2, respectively . 
 
These numbers may insinuate that  ï for the 
experimental group s ï the increased practice led 
to an improvement in final exam score, though it 
is too early to say anything with a high degree of 

confidence due to such a s mall sample size. 
Nevertheless, the final exam numbers are 
encouraging.  
 

Group  

Average 
Final Quiz 

Score  
Average JAVA 
Program Score  

Cumulative 
Average 

C1 66%  51%  56% 

E1 74%  71%  72% 

E2 78%  74%  75% 
 

Table 2: Final exam score for all groups  

An end -of -course survey (see Appendix C) was 

conducted  for both E1 and E2. The number of 

participants was 22 and 13 respectively, i.e., 35 
students in total. One of the question s asked the 
students about how they felt about the utility and 
effectiveness of this intervention  in completing 
the course satisfacto rily. A surprising 90% of the 
students  in E1 and 84% in E2  answered that they 
felt positive/better about using this technique , 

while 10%  in E1 and 9% in E2  reported that they 
felt slightly worse  while working with this 
technique . 
 
A cumulative 45% of the s tudents answered that 
working every day on assignments  made it easy 
for them to manage stress . Students remarked 

that the process made it easy to manage overall 

stress as the assignments were gradually 
increasing in difficulty . 39 %  said it increased their 
stress levels  as they had to do many more 
assignments, and 15 % cho ose that it made no 
difference. The final exam results, along with the 

student survey responses, instilled confidence in 
the instructor that this technique was worth  
exploring.  
 

There was one glaring and unavoidable cost of 

these impr ovements ï instructor overload.  
 
A Case for the Conversational Agent  

The improvements in final exam scores, though 
encouraging, came at a high price as far as the 
instructor load was c oncerned. The frequency of 
questions asked increased in number, indicating 
more students were interested in asking 
questions. Replying to these questions consumed 
a significant amount of time. This load grew as 

the course progressed because assignments wer e 
due almost every day of the week and had to be 
graded quickly to provide timely feedback to 
students. Since every assignment was built on 
top of the previous one, delayed grading could 
mean students had no previous feedback 

available while attempting the  current 
assignment. This delay is just not an option when 
working with AAAD. Hence, it can be seen how 
quickly the instructor load can increase to the 
point of exhaustion.  
 
There was undoubtedly  a need for support 

structures for the instructor. One way wo uld be to 
hire a dedicated tutor and  a grader. However, 
m any instructors, due to numerous reasons, do 
not have access to such support.  Another way 
would be to create a scripted expert system 
containing scripted question -answers. The script 
is a decision tr ee modeled by domain experts that 

determines which path to take in response to a 
question. These are static systems that may be 

unsuitable in circumstances where a single 
question can be asked in multiple ways.  
 
Instead, a Natural Language Processing (NLP)  

based conversational agent/chatbot  capable of 
answering course - related questions  is chosen for 
bot construction in this work . The reasons for  
implementing such a conversational agent are 
multifold:  
 

1.  Many students ask the s ame question in 

different  ways: Q uestions asked by 
students may be divided into two parts; 
text -based and knowledge -based 
(Scardamalia  & Bereiter,  1992 ) . Text 

based questions refer to queries 
generated as part of reading a text, while 
knowledge based questions are 

generated through a deep interest in the 
topic to extend knowledge. Through the 
years of teaching introductory 
programming courses observed, th e 
author of this work observed that many 
questions asked by multiple students 

were text -based and strikingly similar. In 
those cases,  only the semantics and 
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structure of the question differed , while 

the context of the question was the same.  
Hence, a  system  capable of 
understanding the context of a text based 

question could effectively classify 
multiple questions from multiple students 
into the same bucket  and respond with 
a specific pre defined answer. Directing 
these questions to an NLP -based 
conversational  agent can save the 
instructor much  time, which can be 

utilized i n other areas such as mentoring. 
Predefined responses may not be suitable 
for knowledge based questions, though.  
 

2.  Quic k resolution of trivial queries:  Many 
text based questions asked by the 

students are simple and straightforward 
in nature . These can be easily handled by 
the conversational agent , saving precious 
time.  
 

3.  Studentôs expectation of a quick 
response: Interaction between instructor 

and student is critical for student success, 
more so in an online environment (Chang 
2009). Many studies (Li et al., 2010 ; 
Chang et al., 2015 ) have confirmed that 
students prefer asynchronous modes of 
communication like email or chat while 
interacting with instructors. A well -

designe d conversational agent can easily 
fulfill this task. Given these findings and 

the authorôs own experiences in the 
classroom, it is opined that t he quicker a 
query is resolved, the stronger the 
studentôs conviction there is merit in 

asking questions , as the y will be resolved 
quickly. This could lead to a 
reinforcement loop, making students 
more comfortable asking questions.  
 

4.  Long - term potential: As society goes 
increasingly digital, the current model of 

fixed classrooms, printed textbook s, and 
static lecture s clearly fall  short of fulfilling 
the expectations the society has of the 
educational establishment. Di gital 

generation tends to learn at short or 
twitched speeds through parallel 
processing while simultaneously 

connected to others (Beavis, 2010).  It is 
reported tha t students learn more when 
they immediately  apply what they 
learned  and receive help from human 
tutors who respond quickly ( Colvin, 2007; 
Anwer  et al., 2015 ). A conversational 

agent which is always ready to respond to 

student queries can be a g reat add -on in 

the toolkit of instructors.  
Given all these factors, it was decided to pursue 
the integration of a conversational agent with the 

AAAD technique  to create CASSA.  

3.  SYSTEM DESIGN  

Figure 2 presents an abstracted view of CASSA. 
The student initiates a query through a text 
dialogue/message. If the conversational agent is 
capable of answering the query, it is annotated as 
ñSimple,ò and the response is returned. 

Otherwise, the query is automatically sent to the 
instructor via email through the agent and is 
annotated as ñComplex.ò When the instructor is 
notified of an unanswered query, they update the 
knowledge base of the conversational agent with 

a potential response while relaying the same 

answer/solution to the student.  

 

 
Figure 2: CASSA ï An Abstraction  (see Appendix 

B for expanded view)  

Design Considerations  
The retrieval process of many modern 
conversational agents makes use of advances in 

machine learning  in which responses are based 
on predefined rules as well as analysis of the web 
searches. Some prominent contemporary 
examples are Amazonôs Echo, Microsoftôs 
Cortana, and Appleôs Siri to name a few 
(Weinberger, 2017). The agents on the other side 

of the s pectrum use generative algorithms and 
assemble responses using statistical machine 
translation techniques. One popular example of 
such mechanisms is Seq2Seq, which uses 
recurrent neural networks (RNNôs) to accomplish 

the response generation.  
 

For this wor k, the former approach of predefined 
rules aided with natural language processing 
algorithms was chosen. There are at least three 
reasons for this choice:  

a)  The landscape of questions asked by 
students in a particular course may be 
large, but the questions w ould certainly 

be limited by the domain of the course. 

https://proc.iscap/


2021 Proceedings of the EDSIG Conference   ISSN 2473 -4901  
Washington DC   v7 n55 65  

@2021 ISCAP (Information Systems and Computing Academic Professionals  Page 6 
https:/ /proc.iscap .info ; https://iscap.info  

This can be achieved through rule -based 

or information retrieval methods more 
efficiently since generative methods tend 
to be reasonably much more complex to 

construct.  
b)  By defining a rule -based templat e, it 

would be a lot easier to use the same 
template as a basis for another course, 
thereby possibly achieving re -usability in 
the future.  

c)  Generative algorithms like Seq2Seq and 

systems that use them tend to be 
relatively complex in construction and 
operat ion. Hence, it was deemed fair to 
use a rule -based system as a pilot.  

 
Figure 3: Conversational Agent Architecture  

Figure 3 presents an abstracted view of the 
conversational agent used in this work. Its sub -
parts are discussed below.  

a)  Student: Students can initiate a dialogue 
through three interfaces ï Instructor 
provided web link, Dialogflow messenger, 
and Telegram. Th e student's questions 
are presented to the natural language 
processing (NLP) engine of the 
conversational agent (CA). It is assumed 

that in this day and age, students have 
access to the internet and should have 
the ability to initiate a conversation from 
an interface of their choice. More 
integrations like Facebook Messenger, 
Slack are possible in the future . 

b)  Natural Language Processing Engine 

(NLP): NLP can be defined as 

manipulation of natural language like text 
or speech, using mathematical 
representatio ns and software. The main 
goal of any NLP system is to take in an 
unstructured input and provide a 

structured output. This work makes use 
of Dialogflow, a Google product, and  a 
commercially available NLP platform for 
developing chatbots. It provides a 
powe rful natural language process er  
capable of handling contextual 

conversations. It uses deep parsing 

techniques  and is mainly used as 
integration between a conversational 
interface ( Telegram , Slack , etc.)  and the 

chatbot.  

c) Knowledge Base: The accuracy and fi nal 
employability of conversational agents 
depend greatly on the qualit y and 
quantity of training data. T his statement 
is  true  for both generative (machine 
learning classifiers) and information 

retrieval (o r rule -based) agents.  
 

 
        Figure 4: Conversational agent knowledge 

base  

Though there are many ways of 

collecting , storing, and using the  training 
data, this work re lies upon a simplified 
version depicted in Figure 4.  
 

I.  Query Base: The instructor ï to 
some extent -  predefines what 
questions students are likely to ask 
in the course and creates a data set 
of such question -answer pairs. All 
the possible questions that might 

lead to the same response are 
coded under an Intent , and every 
Intent will have multiple 
questions/user examples under it. 
Basically, an intent categorizes the 
userôs intention, and the agent 

contains possible hundreds of such 

intents (231 in this work). When a 
user writes or says something, the 
NLP engine  (Dialogflow in this 
case), matches the user expression 
with the best Intent.  
Students are also very likely to ask 
questions over email. This can act 

as a rich source of query data that 
the agent would need to improve its 
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accuracy of response. This work 

also verifies the fact that on a single 
topic, many students ask the same 
question in different ways and 

formats.  
All these similar questions can be 
represented by the same Intent to 
generate a single, unified response. 
Figure 5 illustrates this process.  
 

 
                  Figure 5: Intent matching  

 
II.  Response Base: This is where the 

responses/answers to the queries 
are stored. The responses to simple 
to mildly complex queries are 

stored in instructor annotated form, 
i.e., Intents where the instructor 

predef ines the answer for a set of 
queries. The secondary source is 
searched if the response is not 
found in Intents, which includes 
textbook and instructor notes. 

Failing to find an answer in the first 
two sources, the agent sends the 
query to an external webho ok.  

 
d)  External Search/Data Retrieval: The 

agent, as a last resort, also has the ability 

to query the web if it determines that a 
suitable response may not be present 
within it. This service was hosted on a 
web hosting platform named Heroku. 
Currently, only Google searches are 

supported. The agent extracts the 
relevant entities from the studentôs 

query, forms a search string, and relays 
it over to Heroku -  a container based 
Platform as a Service (PaaS) -  which runs 
a node.js service with Google search API 
ena bled. Google search API responds with 
multiple URLs, and the first three URLs 
are presented to the student as a 

reference. This is not a sophisticated 

functionality at all. Students could easily 

search the web themselves and see the 
same URLs listed. The i ntention is to 
minimize student distraction; keep 

students engaged with the agent, and 
improve the agentôs knowledge base. This 
query is moved to instructor annotated 
answers later on.  

4 . Conversational Agent Preliminary 
Evaluation  

Evaluation of a chatbot is a complex problem. 

Many perspectives and methods, many of them 
subjective and often conflicting, can be utilized for 
its evaluation. For example, a chatbot can be 
evaluated on the basis of:  

1.  User experience  

2.  Information Retrieval P erformance  

3.  Linguistic accuracy  
4.  Business perspective  

 
As a direct result of a mu ltitude of evaluation 
methods, numerous metrics, not necessarily 
mutually inclusive,  have been proposed. SASSI, 
PARADICE, MIMIC are but a few such evaluation 

systems (Venkatesh et al., 2018). Some are 
lenient in awarding scores , while others are 
punitive. For example, Walker et al., 1997, 
proposed an  attribute value matrix (AVM) to 
measure chatbot effectiveness. In this method, a 
script is created and is run through the chatbot. 
The desired responses are catalog ed in a 

ñscenario key,ò while the bot responses are 

recorded in the AVM. A confusion matrix (M) is 
then constructed as:  
 

‖                        (1)           

where:  

P(A) = proportion of AVM aggress with t he 
correct response  
P(E) = probability of agreement by chance  

‖     = kappa coefficient; bot that provides 

random answers, ‖=0 ; for a human ‖ would 

ideally be 1. 

 
Other subjective methods of chatbot evaluation 
are presented in other studies on chatbots (Bates, 

& Ayuso, 1991), (Ku ligowska, 2015). It becomes 
readily evident that no single system is able to 
deliver a universal framework for chatbot 

evaluation. Moreover, catering to so many 
different perspectives is an expensive endeavor 
and out of the scope  of this work. Hence, this 
work focuses on the evaluation of the chatbot 
from the perspective of information retrieval 
performance only.  
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Specifically, this work uses a confusion matrix 

similar to the one s uggested by Walker et al., 

1997, but instead of using ‖ as a metric, 

precision, recall, and F1 -scores are calculated to 
evaluate the chatbot.  
A confusion matrix visually answers questions like 
-  when a student asks a question X which has an 
actual answer Y, what was actually predicted?  
 
The expected Intents are shown as rows, and the 

predicted Intents are shown as columns.  
 

 
Figure 6: Confusion Matrix for Module 1  

Figure 6 shows the confusion matrix for module 1 
that has 16 Intents. Every Intent has mult iple 
user examples, which are nothing but different 
ways of asking the same question. For example,  

a student can inquire about the IDE for the 

course. There are many ways this question be 
asked. Some of them are:  

1.  What is the IDE we are using?  
2.  Whatôs the IDE name?  
3.  Can I use Netbeans IDE?  
4.  Tell me the IDE for this course?  

5.  What is the software to run Java 
programs?  

6.  What is the software we are using for this 
course?  

 
These user examples are sent to the agent, and 
whenever the expected and predicted Inten t is a 

match, the diagonal cell value is increased by 1, 
and these are called successful test cases. All 

other cell values that are not on the diagonal are 
failed test cases. Again, it must be noted that this 
method leaves out many other vital facets like 
evaluating chatbot looks, appearance, 
personality. These aspects may be evaluated in 

the future as the work on this system progresses.  
 
At the time of writing, the agent had access to 
had 231 instructor annotated Intents, instructor 
class notes compiled as  a .pdf, and a freely 

available Java textbook as a .pdf. Out of the 231 

Intents, 104 were predefined by the instructor, 
and the rest were compiled from the questions 
asked by students on email over years of teaching 

this programming course. It should be no ted that 
every Intent contains examples/queries that are 
written in different formats/ways but point 
towards the same response/answer. The 
distribution of Intents among different 
chapters/modules is listed in Table 3.  
 

Module  No. of Intents  

1 16  

2 27  

3 37  

4 40  

5 41  

6 39  

7 31  

Total  231  

Table 3: No. of Intents per module  

The instructor annotated Intents if correctly 
matched with the user query, are the first line of 
response. If the response isnôt found in those 

intents, the query is referred to instructor notes 
or the textbook, and then the web, in that order. 
The more su ch intents the agent has access to, 
the better the potential accuracy of the agent. 
Ideally, the number of intents should 
progressively expand as the course is taught 
multiple times over, and the new questions by the 

students, and previously unknown questi ons to 
the agent, a re fed into the knowledge base.  
 
Three performance metrics, namely precision, 
recall, and F1 -score, were measured for every 
Intent. As can be seen, there are numerous ways 

of asking the same question. These ways are the 
instructor annota ted queries or user examples. All 
these questions should match the same Intent, 
which in this case should be 
IDE_type_and_version. However, it is tough to 
achieve such perfect performance. For the sake 
of brevity, Figure 6 only displays the performance 

of the agent for Module 1 having 16 intents. The 
precision, recall, and F1 -score are also shown in 
the three rightmost columns.  

 
Averages of all 231 Intent performance scores 
were computed to mark the final performance 
measures of the agent. The results are l isted in 

Table 4.  
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Performance Metric  Average Metric 

Scores for Seven 
Modules  

Precision  0.7981  

Recall  0.7856  

F1-Score  0.7923  

Table 4: Preliminary performance score of 
conversational agent  

F1-Score below 0.80 is less than desirable, and 

F1-Score above 0.90 is considered good.  
 
As a work in progress, the author believes that an 
F1-Score of 0.7923, though only slightly 
comforting, is a reasonable milestone in the 
preliminary agent development while 
acknowledging that a lot more training data and 

improvements are required to make this agent 
usable in live courses.  See Appendix B for 
example conversations between the chatbot and 
a student. The integration with Dialogflow 
Messenger and Telegram is  shown.  
 

5. CONCLUSION AND FUTURE WORK  

At an anecdotal level, the results indicate that it 
may be possible to affect the motivation levels of 
novice programmers using incrementally 
scaffolded instruction. Though there were no 
significant differences in the individual chapter 
quiz scores between  the control and experimental 

groups, the experimental groups performed 

significantly better in the final exam. This came 
at the price of significant instructor overload. The 
integration of a helper chatbot with this technique 
is expected to reduce the ins tructor load. The 
initial preproduction performance of the 
conversational agent is undoubtedly below 

expectations but is expected to improve with 
more data and time. One of the ways the author 
intends to collect more data/user examples is to 
use the course  chat forums and discussion boards 
for more questions asked by students to each 
other. The next step will be continuous training of 
the chatbot to achieve an F1 -Score of at least 

0.85, after which it will be opened for students to 
use.  
 

To further mitigate  the load on the instructor 
while maintaining the integrity of the technique, 
integrating an automatic grading system with the 

CASSA is proposed. An abstract schema of this 
system is shown in Figure 7 . 
 

 
Figure 7: Integration of Auto Grader with  CASSA 

In closing, it would be too premature to consider 
the CASSA system as a workable method for 
affecting student motivation, given the significant 
challenges this system entails presently. The 

preliminary results, nevertheless, are 
encouraging and provide a soli d direction for 

future research.  
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APPENDIX A  
 

Table X: Increment in cognitive load with time  

Assignment 

No.  

Description  Concepts Tested  Cognitive Load  

1 Write a method printS  that 

takes a string as an input and 
prints it to the console.  

Rudimentary method 

writing.  

Low  

2 Modify the above method 
printS and enable it to take 
another argument, an integer, 
n . The method then prints the 
string n  times in a line.  

Method writing, met hod 
calling, method 
modification.  

Low  

3 Reuse printS to print a user 
entered string n×n times ;  i.e .,  
a square with each element as 
the string  

User input, loops, method 
writing, method calling  

Medium  

4 Reuse printS  method to print a 
right angle triangle in terms of 
user entered string  

User input, loops, method 
writing, method calling, 
Problem solving  

Medium  

5 Reuse printS to print a pyramid  
in terms of user entered string  

User input, loops, method 
writing, method calling, 
Problem solving  

High  
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APPENDIX B  
 

Dialogflow Messenger Integration 
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Telegram Integration 

  
 

 

Expanded View -  CASSA 
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APPENDIX C  
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