
2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 1
https:/ /proc.iscap .info ; https://iscap.info

Conversational Agent Supported Incrementally
Scaffolded Approach for Teaching Introductory

Programming Course(s)

Deepak Dawar

daward@miamioh.edu
Dept. of Computer and Information Technology

Miami University
Hamilton, Ohio 45011, U.S.A.

Abstract

Learning computer programming is a challenging task for most beginners. Demotivation and learned
helplessness are pretty common. A novel instructional technique that leverages the value -expectancy
motivational model of student learning was conceptualized b y the author to counter the lack of

motivation in the introductory class. The result was a frequency adherent scaffolded instructional
technique called An Assignment A Day (AAAD). Instead of writing an assignment and a lab for each
module/chapter, students were asked to complete one assignment a day, not exceeding four
assignments a week. The assignments were incrementally difficult and had to be done almost every
day. With the application of AAAD for two consecutive semesters, there was a meaningful improv ement

in the final grades. This technique, though initially encouraging, created a significant load on the
instructor in terms of assignments graded and questions answered every day. A natural language

processing (NLP) based conversational agent was design ed and integrated with AAAD to counter this
overload. The idea was simple ï relay commonly asked course questions to an NLP based chatbot and
let the instructor handle the complex queries. This integrated system was named Conversational Agent
Supported Sca ffolded Approach (CASSA). The main contribution of this work is the construction of a
conversational agent and its integration with AAAD. The conversational agent is currently being assessed
for overall efficacy, though preliminary results are discussed. T he vision is to create a generic virtual

assistant template that can be re -used across multiple courses to assist instructor s.

Keywords: Conversational agents, NLP, introductory programming, pedagogy, value -expectation ,
student procras tination.

1. INTRODUCTION

Computer programming is an arduous learning
process for most beginners, and high failure rates
have been reported continuously (Allan & Kolesar,
1997; Newman, Gatward, & Po ppleton, 1970;
Bennedsen & Caspersen, 2007; Sheard & Hagan,
1998; Watson & Li, 2014 ; Beaubouef & Mason,

2005; Howles, 2009; Kinnunen & Malmi 2006;
Mendes et al., 2012). Given the complex nature
of the programming (Kim & Lerch, 1997; Rogalski
& Samurçay, 1990; Ro bins, Rountree & R ountree,

2003), students frequently get demotivated.

While teaching multiple introductory

programming courses over many years, the
author observed that apart from the complex
nature of programming, there were other factors
at play that feed the demotivatio n loop. Some
example s are:

¶ Less tha n desirable instructor presence

¶ High temporal disengagement with the
programming activities

¶ Students internal lack of motivat ion

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 2
https:/ /proc.iscap .info ; https://iscap.info

Keeping these factors in mind, and inspired by

value -expectancy (Keller, 1983) & cognitive load
theory (Paas, Renkl, & Brünken, 2010; Sweller,
1988, 1994), a novel instructional technique

called An Assignment A Day (AAAD) approach
was designed. Instead of completing a lab and
assignment per chapter, students were asked to
complete one simple assignment a day, with a
cap of four assignments a we ek. Every
subsequent assignment of a chapter/course built
on the previous assignment and carried an

incremental cognitive load (see Appendix A) .
Apart from testing students on new concept s, the
subsequent assignment re used the concepts
learned/applied in the previous assignment. The
approach (Dawar , 2021) can be summarized as:

1. Students will ideally do one assignment

per day .
2. Opening assignments of the chapter will

test students on very basic skills like
writing a method stub. Subsequent
assignments will gradually increase in
complexity keeping in mind the cognitive
load asserted by the assignment . This

mechanism is in part based on the study
conducted by Alexandron et al. (2014) .

3. There will not be m ore than four
assignments per week. Deadlines may be
relaxed on a case - to -case basis.

4. As an exception, and depending upon the
cognitive load, an assignment may be

completed in two or more days rather
than a single day.

The technique rests on three central pillars, as
shown in Figure 1.

Figure 1: AAAD Interventional Technique

This study aims to address two research
questions:
a) What is the effect of mandatory continuous

engagement with cognitively germane testing

on student outcome and instructor load?
b) How can instructor load be minimized while

maintaining the sanctity of the technique?
The author could foresee a t least two significant
issues that cou ld derail the potential acceptability
of this technique:

a) Will the high number of assignments, albeit of

germane cognitive load, dissuade students
from participating , thereby compounding the
very problem the author is trying to tackle ,

i.e. , lack of motivation due to learned
helplessness? Constant testing has been
associated with high student anxiety (Kaplan
et al ., 2005). An easy way to ma ke students
dislike programming is to put them under
unnecessary s tress (Goold & Rimmer, 2000).
Strict e nforcement of everyday deadlines

may easily overwhelm these students. The
only chance of overcoming this hurdle was
providing germane load assignments.

b) Even if the intervention shows promising
results with students, what does that mean
for the instructor load? More assignments

would naturally elicit more questions,
requiring additional instructional and tutoring
presence, and more grading time, besides
ot her externalities. Massive overload and
instructor fatigue become apparent. Some
follow -up questions are warranted . For
example :

1. Is it prudent or even feasible to run a
potentially beneficial instructional
intervention while risking instructor
overload sim ultaneously ?

2. If the intervention is proven to be
beneficial, how can instructor support be
increased so that the outcome is better

for students (in terms of motivation) as
well as the instructor (in terms of course

load)?
3. Do the system and tools required for

instructor support already exist, or would
they need to be allocated/constructed?

4. Are these support systems course -
specific, or can they be reused within
courses?

These questions are vast and may need multiple
solutions at multiple levels. As a preli minary
solution, a conversational agent or a chatbot is

proposed to assist the instructor. The essential
function of this agent is to answer repeatedly
asked student questions in the course when
access to the instructor is not available.

The rest of the p aper is structured as follows .
Section 2 discusses the perceived need for the

intervention and the conversational agent and
builds a case for their integration. Section 3
touches upon the operational aspects of natural
language processor systems (NLP) and illustrates
the parts of the conversational agent. Section 4
discusses the preliminary results for the accuracy

of the conversational agent.

Teaching
Intervention

Continuous
Practice

Congnitive Load
Increments

Continuous
Feedback and

Resolution

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 3
https:/ /proc.iscap .info ; https://iscap.info

Section 5 concludes the paper and briefly

presents the foundations of future research.

2. A Case for Integration o f a

Conversational Agent With Scaffolded
Instructional System

In this section, justification for building and
employing the AAAD technique is presented. It is
then argued that while this might be a good idea
for student motivation and performance, it can
overload the instructor who lacks access to

dedicated resources like graders and tutors. A
case is then built for the construction and use of
a conversational agent/chatbot to take some load
off the instructor while not jeopardizing the
instructional techni que. The terms conversational

agent and chatbot are used interchangeably

throughout the paper.

A Case for AAAD Approach
Studentsô belief in their success is vital if they are
to be motivated to learn. There are many causes
of student demotivation, but the one suspect that
the author can categorically point towards in their

classrooms is high cognitive load. Cognitive load
theory (Paas, Renkl , & Brünken, 2010 ; Sweller,
1988, 1994) throws light on the aspects of load
placed on working memory while a task is being
executed. Computer programming requires
balancing numerous interactive tasks
simultaneously . For example, it involv es juggling

numerous details like problem domain, the

current state of the program, language syntax,
strategies (Winslow, 1996).

Procrastination is extremely prevalent in students
studying in a university setup. Some estimates

suggest that 80 to 95 percen t of students engage
in procrastination (Steel, 2007). The longer the
students wait to turn in the assignment, the
worse their grades become (Kim & Seo, 2015).
Procrastination has also been linked to higher
levels of anxiety, stress, and fatigue (Beutel et
al., 2016) . After having taught multiple

programming courses over multiple years, the
author encountered similar patterns.

AAAD was designed k eeping these factors in
mind. The intervention made continuous targeted
interaction between the material and st udents ï
somewhat mandatory. It was opined that this

would:

¶ Establish a clear study pattern for students to

counter procrastination.
¶ Potentially improve studentôs expectations

owing to germane cognitive loads .

¶ Make them practice programming every

almost every day. The inspiration for this
operation came from strong evidence
suggested by psychological studies (Brown &

Bennett, 2002; Glover, Ronning & Bruning,
1990 ; Moors & De Houwer, 2006) done on
variable student populations. Constant
practice can improve student motivation and
make them want to learn more (Moss & Case,
2001).

The technique AAAD was administered to two
experimental groups (E1 and E2), and the study
was spread over three semesters. The control
group (C1) was asked to complete one
assignment and one lab work per week. Q uizzes
were given at the end of every chapter. This is

the usual approach followed at our institution for
introdu ctory programming classes. E1 and E2
were taught with the interventional approach for
the subsequent two semesters.

Both experimental groups were asked to
complete 37 assignments over the course of 12

weeks. 10 days were meant for chapter quizzes
and exams. Other details like student population
comparison of the groups, determination of
germane load mechanism can be found in
(Dawar , 2021).

All groups were administered the same module

quizzes and final exam , and their average scores
were compared to measure the impact of this

tech nique on overall grades if any.

Module
C1 (20

students)
E1 (22

students)
E2 (20

students)

1 71% (3.72) 75% (2.05) 75% (2.22)

2 79% (2.08) 71% (2.33) 78% (3.32)

3 73% (3.19) 73% (2.55) 73% (3.68)

4 62% (3.72) 66% (2.49) 71% (3.01)

5 74% (4.26) 75% (2.44) 75% (3.10)

6 67% (3.41) 67% (1.78) 76% (1.95)

7 56% (3.48) 65% (2.50) 61% (3.30)

Average 68% (3.40) 70% (2.30) 73% (2.94)

Table 1: M ean grade points (with standard
deviations) scored on the quiz by all groups

As shown in Table 1, seven chapters/modules
were taught to all the groups. A quiz was given at

the end of every chapter. Columns C1, C2, and
E2 depict the average class scores (with standard
deviations) of the quiz. The final exam consisted
of a quiz that covered all seven modules, and a

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 4
https:/ /proc.iscap .info ; https://iscap.info

Java problem. Table 2 shows the average

achieved by the class in the final exam.
Though there was no significant difference
between module quiz scores (see Table 1) , the

experimental group s performed much better in
the fina l exam (Table 2) . Even though the gains
in the final quiz are marginal, the experimental
group s outpe rformed the control group by 20
percentage points or more in JAVA program
writing. The overall cumulative improvement in
the final exam mean score was 16% and 19% for

E1 and E2, respectively .

These numbers may insinuate that ï for the
experimental group s ï the increased practice led
to an improvement in final exam score, though it
is too early to say anything with a high degree of

confidence due to such a s mall sample size.
Nevertheless, the final exam numbers are
encouraging.

Group

Average
Final Quiz

Score
Average JAVA
Program Score

Cumulative
Average

C1 66% 51% 56%

E1 74% 71% 72%

E2 78% 74% 75%

Table 2: Final exam score for all groups

An end -of -course survey (see Appendix C) was

conducted for both E1 and E2. The number of

participants was 22 and 13 respectively, i.e., 35
students in total. One of the question s asked the
students about how they felt about the utility and
effectiveness of this intervention in completing
the course satisfacto rily. A surprising 90% of the
students in E1 and 84% in E2 answered that they
felt positive/better about using this technique ,

while 10% in E1 and 9% in E2 reported that they
felt slightly worse while working with this
technique .

A cumulative 45% of the s tudents answered that
working every day on assignments made it easy
for them to manage stress . Students remarked

that the process made it easy to manage overall

stress as the assignments were gradually
increasing in difficulty . 39 % said it increased their
stress levels as they had to do many more
assignments, and 15 % cho ose that it made no
difference. The final exam results, along with the

student survey responses, instilled confidence in
the instructor that this technique was worth
exploring.

There was one glaring and unavoidable cost of

these impr ovements ï instructor overload.

A Case for the Conversational Agent

The improvements in final exam scores, though
encouraging, came at a high price as far as the
instructor load was c oncerned. The frequency of
questions asked increased in number, indicating
more students were interested in asking
questions. Replying to these questions consumed
a significant amount of time. This load grew as

the course progressed because assignments wer e
due almost every day of the week and had to be
graded quickly to provide timely feedback to
students. Since every assignment was built on
top of the previous one, delayed grading could
mean students had no previous feedback

available while attempting the current
assignment. This delay is just not an option when
working with AAAD. Hence, it can be seen how
quickly the instructor load can increase to the
point of exhaustion.

There was undoubtedly a need for support

structures for the instructor. One way wo uld be to
hire a dedicated tutor and a grader. However,
m any instructors, due to numerous reasons, do
not have access to such support. Another way
would be to create a scripted expert system
containing scripted question -answers. The script
is a decision tr ee modeled by domain experts that

determines which path to take in response to a
question. These are static systems that may be

unsuitable in circumstances where a single
question can be asked in multiple ways.

Instead, a Natural Language Processing (NLP)

based conversational agent/chatbot capable of
answering course - related questions is chosen for
bot construction in this work . The reasons for
implementing such a conversational agent are
multifold:

1. Many students ask the s ame question in

different ways: Q uestions asked by
students may be divided into two parts;
text -based and knowledge -based
(Scardamalia & Bereiter, 1992) . Text

based questions refer to queries
generated as part of reading a text, while
knowledge based questions are

generated through a deep interest in the
topic to extend knowledge. Through the
years of teaching introductory
programming courses observed, th e
author of this work observed that many
questions asked by multiple students

were text -based and strikingly similar. In
those cases, only the semantics and

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 5
https:/ /proc.iscap .info ; https://iscap.info

structure of the question differed , while

the context of the question was the same.
Hence, a system capable of
understanding the context of a text based

question could effectively classify
multiple questions from multiple students
into the same bucket and respond with
a specific pre defined answer. Directing
these questions to an NLP -based
conversational agent can save the
instructor much time, which can be

utilized i n other areas such as mentoring.
Predefined responses may not be suitable
for knowledge based questions, though.

2. Quic k resolution of trivial queries: Many
text based questions asked by the

students are simple and straightforward
in nature . These can be easily handled by
the conversational agent , saving precious
time.

3. Studentôs expectation of a quick
response: Interaction between instructor

and student is critical for student success,
more so in an online environment (Chang
2009). Many studies (Li et al., 2010 ;
Chang et al., 2015) have confirmed that
students prefer asynchronous modes of
communication like email or chat while
interacting with instructors. A well -

designe d conversational agent can easily
fulfill this task. Given these findings and

the authorôs own experiences in the
classroom, it is opined that t he quicker a
query is resolved, the stronger the
studentôs conviction there is merit in

asking questions , as the y will be resolved
quickly. This could lead to a
reinforcement loop, making students
more comfortable asking questions.

4. Long - term potential: As society goes
increasingly digital, the current model of

fixed classrooms, printed textbook s, and
static lecture s clearly fall short of fulfilling
the expectations the society has of the
educational establishment. Di gital

generation tends to learn at short or
twitched speeds through parallel
processing while simultaneously

connected to others (Beavis, 2010). It is
reported tha t students learn more when
they immediately apply what they
learned and receive help from human
tutors who respond quickly (Colvin, 2007;
Anwer et al., 2015). A conversational

agent which is always ready to respond to

student queries can be a g reat add -on in

the toolkit of instructors.
Given all these factors, it was decided to pursue
the integration of a conversational agent with the

AAAD technique to create CASSA.

3. SYSTEM DESIGN

Figure 2 presents an abstracted view of CASSA.
The student initiates a query through a text
dialogue/message. If the conversational agent is
capable of answering the query, it is annotated as
ñSimple,ò and the response is returned.

Otherwise, the query is automatically sent to the
instructor via email through the agent and is
annotated as ñComplex.ò When the instructor is
notified of an unanswered query, they update the
knowledge base of the conversational agent with

a potential response while relaying the same

answer/solution to the student.

Figure 2: CASSA ï An Abstraction (see Appendix

B for expanded view)

Design Considerations
The retrieval process of many modern
conversational agents makes use of advances in

machine learning in which responses are based
on predefined rules as well as analysis of the web
searches. Some prominent contemporary
examples are Amazonôs Echo, Microsoftôs
Cortana, and Appleôs Siri to name a few
(Weinberger, 2017). The agents on the other side

of the s pectrum use generative algorithms and
assemble responses using statistical machine
translation techniques. One popular example of
such mechanisms is Seq2Seq, which uses
recurrent neural networks (RNNôs) to accomplish

the response generation.

For this wor k, the former approach of predefined
rules aided with natural language processing
algorithms was chosen. There are at least three
reasons for this choice:

a) The landscape of questions asked by
students in a particular course may be
large, but the questions w ould certainly

be limited by the domain of the course.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 6
https:/ /proc.iscap .info ; https://iscap.info

This can be achieved through rule -based

or information retrieval methods more
efficiently since generative methods tend
to be reasonably much more complex to

construct.
b) By defining a rule -based templat e, it

would be a lot easier to use the same
template as a basis for another course,
thereby possibly achieving re -usability in
the future.

c) Generative algorithms like Seq2Seq and

systems that use them tend to be
relatively complex in construction and
operat ion. Hence, it was deemed fair to
use a rule -based system as a pilot.

Figure 3: Conversational Agent Architecture

Figure 3 presents an abstracted view of the
conversational agent used in this work. Its sub -
parts are discussed below.

a) Student: Students can initiate a dialogue
through three interfaces ï Instructor
provided web link, Dialogflow messenger,
and Telegram. Th e student's questions
are presented to the natural language
processing (NLP) engine of the
conversational agent (CA). It is assumed

that in this day and age, students have
access to the internet and should have
the ability to initiate a conversation from
an interface of their choice. More
integrations like Facebook Messenger,
Slack are possible in the future .

b) Natural Language Processing Engine

(NLP): NLP can be defined as

manipulation of natural language like text
or speech, using mathematical
representatio ns and software. The main
goal of any NLP system is to take in an
unstructured input and provide a

structured output. This work makes use
of Dialogflow, a Google product, and a
commercially available NLP platform for
developing chatbots. It provides a
powe rful natural language process er
capable of handling contextual

conversations. It uses deep parsing

techniques and is mainly used as
integration between a conversational
interface (Telegram , Slack , etc.) and the

chatbot.

c) Knowledge Base: The accuracy and fi nal
employability of conversational agents
depend greatly on the qualit y and
quantity of training data. T his statement
is true for both generative (machine
learning classifiers) and information

retrieval (o r rule -based) agents.

 Figure 4: Conversational agent knowledge

base

Though there are many ways of

collecting , storing, and using the training
data, this work re lies upon a simplified
version depicted in Figure 4.

I. Query Base: The instructor ï to
some extent - predefines what
questions students are likely to ask
in the course and creates a data set
of such question -answer pairs. All
the possible questions that might

lead to the same response are
coded under an Intent , and every
Intent will have multiple
questions/user examples under it.
Basically, an intent categorizes the
userôs intention, and the agent

contains possible hundreds of such

intents (231 in this work). When a
user writes or says something, the
NLP engine (Dialogflow in this
case), matches the user expression
with the best Intent.
Students are also very likely to ask
questions over email. This can act

as a rich source of query data that
the agent would need to improve its

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 7
https:/ /proc.iscap .info ; https://iscap.info

accuracy of response. This work

also verifies the fact that on a single
topic, many students ask the same
question in different ways and

formats.
All these similar questions can be
represented by the same Intent to
generate a single, unified response.
Figure 5 illustrates this process.

 Figure 5: Intent matching

II. Response Base: This is where the

responses/answers to the queries
are stored. The responses to simple
to mildly complex queries are

stored in instructor annotated form,
i.e., Intents where the instructor

predef ines the answer for a set of
queries. The secondary source is
searched if the response is not
found in Intents, which includes
textbook and instructor notes.

Failing to find an answer in the first
two sources, the agent sends the
query to an external webho ok.

d) External Search/Data Retrieval: The

agent, as a last resort, also has the ability

to query the web if it determines that a
suitable response may not be present
within it. This service was hosted on a
web hosting platform named Heroku.
Currently, only Google searches are

supported. The agent extracts the
relevant entities from the studentôs

query, forms a search string, and relays
it over to Heroku - a container based
Platform as a Service (PaaS) - which runs
a node.js service with Google search API
ena bled. Google search API responds with
multiple URLs, and the first three URLs
are presented to the student as a

reference. This is not a sophisticated

functionality at all. Students could easily

search the web themselves and see the
same URLs listed. The i ntention is to
minimize student distraction; keep

students engaged with the agent, and
improve the agentôs knowledge base. This
query is moved to instructor annotated
answers later on.

4 . Conversational Agent Preliminary
Evaluation

Evaluation of a chatbot is a complex problem.

Many perspectives and methods, many of them
subjective and often conflicting, can be utilized for
its evaluation. For example, a chatbot can be
evaluated on the basis of:

1. User experience

2. Information Retrieval P erformance

3. Linguistic accuracy
4. Business perspective

As a direct result of a mu ltitude of evaluation
methods, numerous metrics, not necessarily
mutually inclusive, have been proposed. SASSI,
PARADICE, MIMIC are but a few such evaluation

systems (Venkatesh et al., 2018). Some are
lenient in awarding scores , while others are
punitive. For example, Walker et al., 1997,
proposed an attribute value matrix (AVM) to
measure chatbot effectiveness. In this method, a
script is created and is run through the chatbot.
The desired responses are catalog ed in a

ñscenario key,ò while the bot responses are

recorded in the AVM. A confusion matrix (M) is
then constructed as:

‖ (1)

where:

P(A) = proportion of AVM aggress with t he
correct response
P(E) = probability of agreement by chance

‖ = kappa coefficient; bot that provides

random answers, ‖=0 ; for a human ‖ would

ideally be 1.

Other subjective methods of chatbot evaluation
are presented in other studies on chatbots (Bates,

& Ayuso, 1991), (Ku ligowska, 2015). It becomes
readily evident that no single system is able to
deliver a universal framework for chatbot

evaluation. Moreover, catering to so many
different perspectives is an expensive endeavor
and out of the scope of this work. Hence, this
work focuses on the evaluation of the chatbot
from the perspective of information retrieval
performance only.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 8
https:/ /proc.iscap .info ; https://iscap.info

Specifically, this work uses a confusion matrix

similar to the one s uggested by Walker et al.,

1997, but instead of using ‖ as a metric,

precision, recall, and F1 -scores are calculated to
evaluate the chatbot.
A confusion matrix visually answers questions like
- when a student asks a question X which has an
actual answer Y, what was actually predicted?

The expected Intents are shown as rows, and the

predicted Intents are shown as columns.

Figure 6: Confusion Matrix for Module 1

Figure 6 shows the confusion matrix for module 1
that has 16 Intents. Every Intent has mult iple
user examples, which are nothing but different
ways of asking the same question. For example,

a student can inquire about the IDE for the

course. There are many ways this question be
asked. Some of them are:

1. What is the IDE we are using?
2. Whatôs the IDE name?
3. Can I use Netbeans IDE?
4. Tell me the IDE for this course?

5. What is the software to run Java
programs?

6. What is the software we are using for this
course?

These user examples are sent to the agent, and
whenever the expected and predicted Inten t is a

match, the diagonal cell value is increased by 1,
and these are called successful test cases. All

other cell values that are not on the diagonal are
failed test cases. Again, it must be noted that this
method leaves out many other vital facets like
evaluating chatbot looks, appearance,
personality. These aspects may be evaluated in

the future as the work on this system progresses.

At the time of writing, the agent had access to
had 231 instructor annotated Intents, instructor
class notes compiled as a .pdf, and a freely

available Java textbook as a .pdf. Out of the 231

Intents, 104 were predefined by the instructor,
and the rest were compiled from the questions
asked by students on email over years of teaching

this programming course. It should be no ted that
every Intent contains examples/queries that are
written in different formats/ways but point
towards the same response/answer. The
distribution of Intents among different
chapters/modules is listed in Table 3.

Module No. of Intents

1 16

2 27

3 37

4 40

5 41

6 39

7 31

Total 231

Table 3: No. of Intents per module

The instructor annotated Intents if correctly
matched with the user query, are the first line of
response. If the response isnôt found in those

intents, the query is referred to instructor notes
or the textbook, and then the web, in that order.
The more su ch intents the agent has access to,
the better the potential accuracy of the agent.
Ideally, the number of intents should
progressively expand as the course is taught
multiple times over, and the new questions by the

students, and previously unknown questi ons to
the agent, a re fed into the knowledge base.

Three performance metrics, namely precision,
recall, and F1 -score, were measured for every
Intent. As can be seen, there are numerous ways

of asking the same question. These ways are the
instructor annota ted queries or user examples. All
these questions should match the same Intent,
which in this case should be
IDE_type_and_version. However, it is tough to
achieve such perfect performance. For the sake
of brevity, Figure 6 only displays the performance

of the agent for Module 1 having 16 intents. The
precision, recall, and F1 -score are also shown in
the three rightmost columns.

Averages of all 231 Intent performance scores
were computed to mark the final performance
measures of the agent. The results are l isted in

Table 4.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 9
https:/ /proc.iscap .info ; https://iscap.info

Performance Metric Average Metric

Scores for Seven
Modules

Precision 0.7981

Recall 0.7856

F1-Score 0.7923

Table 4: Preliminary performance score of
conversational agent

F1-Score below 0.80 is less than desirable, and

F1-Score above 0.90 is considered good.

As a work in progress, the author believes that an
F1-Score of 0.7923, though only slightly
comforting, is a reasonable milestone in the
preliminary agent development while
acknowledging that a lot more training data and

improvements are required to make this agent
usable in live courses. See Appendix B for
example conversations between the chatbot and
a student. The integration with Dialogflow
Messenger and Telegram is shown.

5. CONCLUSION AND FUTURE WORK

At an anecdotal level, the results indicate that it
may be possible to affect the motivation levels of
novice programmers using incrementally
scaffolded instruction. Though there were no
significant differences in the individual chapter
quiz scores between the control and experimental

groups, the experimental groups performed

significantly better in the final exam. This came
at the price of significant instructor overload. The
integration of a helper chatbot with this technique
is expected to reduce the ins tructor load. The
initial preproduction performance of the
conversational agent is undoubtedly below

expectations but is expected to improve with
more data and time. One of the ways the author
intends to collect more data/user examples is to
use the course chat forums and discussion boards
for more questions asked by students to each
other. The next step will be continuous training of
the chatbot to achieve an F1 -Score of at least

0.85, after which it will be opened for students to
use.

To further mitigate the load on the instructor
while maintaining the integrity of the technique,
integrating an automatic grading system with the

CASSA is proposed. An abstract schema of this
system is shown in Figure 7 .

Figure 7: Integration of Auto Grader with CASSA

In closing, it would be too premature to consider
the CASSA system as a workable method for
affecting student motivation, given the significant
challenges this system entails presently. The

preliminary results, nevertheless, are
encouraging and provide a soli d direction for

future research.

6. REFERENCES

Alexandron, G., Armoni, M., Gordon, M. & Harel,

D. (2014). Scenario ïbased programming:
Reducing the cognitive load, fostering

abstract thinking. In Companion Proceedings
of the 36th International Conf erence on
Software Engineering pp. 311 ï320 .

Ali, N., Anwer, M., & J., Abbas. (2015). Impact of
Peer Tutoring on Learning of Students.
Journal for Studies in Management and

Planning , 1(2), 61 -66.

Allan, V. H. & Kolesar, M. V. (1997). Teach ing
computer science: a problem solving
approach that works. ACM SIGCUE Outlook,
25(1 ï2), 2 ï10.

Bates, M., & Ayuso, D. (1991). A proposal for
incremental dialogue evaluation. Proceedings

of the workshop on Speech and Natural
Language - HLT '91.

Beaubouef, T. B. & J. Mason (2005). Why the High
Attrition Rate for Computer Science Students:
Some Thoughts and Observations. Inroads ï
The SIGCSE Bulletin, 37(2), 103 ï106.

Beavis, C. (2010) . Literacy, Learning, and Online

Games:Challenge and Possibility in the Dig ital
Age. In Proceedings of the IEEE 3rd
International Conference on Digital Game and
Intelligent Toy Enhanced Learning .
Piscataway, NJ: Institute for Electrical and
Electronics Engineers .

Bennedsen, J. & Caspersen, M. E. (2007). Failure

rates in introduct ory programming. ACM
SIGCSE Bulletin, 39(2), 32 ï36.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 10
https:/ /proc.iscap .info ; https://iscap.info

Beutel, M. E., Klein, E. M., Aufenanger, S.,

Brähler, E., Dreier, M., Müller, K. W., Quiring,
O., Reinecke, L., Schmutzer, G., Stark, B., &
Wölfling, K. (2016). Procrastination, Distress

and Life Satisfaction across the Age Range -
A German Representative Community
Study. PloS one , 11 (2), e0148054.

Brown, S. W., & Bennett, E. D. (2002). The role
of practice and automaticity in temporal and
nontemporal dual - task performance.
Psychological Research , 66, 80 ï89 .

Chang, C -W. (2009). Efficacy of interaction
among college students in a web -based
environment. Journal of Educational
Technology Development and Exchange,
2(1), 17 -32 .

Colvin, J. W. (2007). Peer tutoring and social

dynamics in higher education. Mentoring and
Tutoring, 15(2), 15 -181 .

Chang, C -W., Hurst, B., & McLean, A. (2015).
Youôve got mail: Student preferences of
instructor communication in online courses in
an age of advancing technologies. Journal of
Educational Technology Development and

Exchange, 8(1), 39 -47 .

Dawar, D., (2021). Towards Improving Student
Expectations in Introductory Programming
Course with Incrementally Scaffolded
Approach. Information Systems Education
Journal 19(4) , 61 -76.

Glover, J.A., Ronning, R.R. and Bruning, R.H.:

1990, Cognitive Psychology for Teachers,
Macmillan, New York .

Goold, A., and Rimmer, R. (2000). Factors
affecting performance in first -year
computing. SIGCSE Bulletin 32, 39 ï43.

Howles, T. (2009). A study of attrition and the use

of student learning communities in the
computer science introductory programming
sequence. Computer Science Education ,
19(1), 1 ï13.

Kalchman , M., Moss, J., & Case, R. (2001).
Psychological models for the development of
mathematical understanding: Rational

numbers and functions. In S. M. Carver & D.
Klahr (Eds.), Cognition and instruction:
Twenty - five years of progress (pp. 1 -38).
Mahwah, NJ, U S: Lawrence Erlbaum
Associates Publishers .

Kalchman, M., Moss, J., & Case, R. (2001).
Psychological models for the development of

mathematical understanding: Rational
numbers and functions. In S. M. Carver & D.

Klahr (Eds.), Cognition and instruction:

Twen ty - five years of progress (pp. 1 -38).
Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers.

Kaplan, D. S., Liu, R. X., & Kaplan, H. B (2005).
School related stress in early adolescence and
academic performance three years later: The
conditional influence of self -expectations.
Social Psychology of Education , 8, 3 -17.

Keller, J. M. (1983). Motivational design of
instruction. In Instructional -Design Theories

and Models: An Overview of their Current
Status, C. M. Reigeluth, Ed. Lawrence
Erlbaum Associates, pp . 383 ï434.

Kim, J. & Lerch, F. J. (1997). Why is programming

(sometimes) so difficult? Programming as
scientific discovery in multiple problem

spaces. Information Systems Research 8(1)
25ï50.

Kim, K. R. & Seo, E. H. (2015). The relationship
between procras tination and academic
performance: A meta analysis. Personality
and Individual differences, 82, 26 -33.

Kinnunen, P. & Malmi, L. (2006). Why students

drop out CS1 course?. In Proceedings of the
Second International Workshop on
Computing Education Research (pp. 97 ï108).
New York, NY: ACM.

Kuligowska, K. (2015). Commercial Chatbot:

Performance Evaluation, Usability Metrics and
Quality Standards of Embodied

Conversational Agen ts. Professionals Center
for Business Research, 2(02), 1 -16.
doi:10.18483/pcbr.22

Li, L., Finley, J., Pitts, J., & Guo, R. (2010). Which
is a better choice for student faculty
interaction: Synchronous or asynchronous

communication? Journal of Volume 9, No. 1,
September, 2016 11 Technology Research, 2,
1-12 .

Mendes, A. J., Paquete, L., Cardoso, A. & Gomes,
A. (2012). Increasing student commitment in
introductory programming learning. In
Frontiers in Education Conference (FIE) (pp.

1ï6). New York, NY: IEEE.

Moors, A., & Houwer, J. D. (2006). Automaticity:
A Theoretical and Conceptual Analysis.
Psychol Bull, 132(2), 297 -326 .

Newman, R., Gatward, R. & Poppleton, M. (1970).
Paradigms for teaching computer
programming in higher education. WIT

Transactions on Info rmation and
Communication Technologies, 7, 299 ï305.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 11
https:/ /proc.iscap .info ; https://iscap.info

Paas, F., Renkl, A., & Sweller, J. (2010). Cognitive

Load Theory and Instructional Design: Recent
Developments. Educational Psychologist, 38
(1), 1 -4.

Robins, A. V., Rountree, J. & Rountree, N. (2003).
Learning and teaching programming: A
review and discussion. Computer Science
Education 13(2) pp. 137ï172.

Rogalski J. & Samurçay R. (1990). Acquisition of
programming knowledge and skills. In J. M.
Hoc, T. R. G. Green, R. Samurçay & D. J.

Gillmore, eds., Ps ychology of Programming.
London: Academic Press, pp. 157 ï174.

Scardamalia, M. and Bereiter, C. 1992 . TextȤ
based and knowledge Ȥbased questioning by

children . Cognition and Instruction , 9: 177ï
199 .

Sheard, J. & Hagan, D. (1998). Our failing

students: a study of a repeat group. ACM
SIGCSE Bulletin, 30(3), 223 ï227.

Steel, P. (2007). The nature of procrastination: A
meta -analytic and theoretical review of
quintessential self - regulatory
failure. Psychological Bulletin, 133 (1), 65 ï94 .

Sweller, J. (1988). Cognitive load during problem

solving: Effects on learning. Cognitive
Science , 12(2), 257 ï285.

Sweller, J. (1994). Cognitive load theory, learning

difficulty, and instructional design. Learning
and Instruction , 4(4), 295 ï312.

Venkatesh, A., Khatri, C., Ram, A., Guo , F.,
Gabriel, R., Nagar, A., Raju, A. (2018). On
Evaluating and Comparing Conversational
Agents. ArXiv:1801.03625 [Cs].

Walker, M. A., Litman, D. J., Kamm, C. A., &

Abella, A. (1997). Paradise. Proceedings of
the 35th annual meeting on Association for
Computational Linguistics.

Watson, C. & Li, F. W. (2014). Failure rates in

introductory programming revisited. In
Proceedings of the 2014 Conference on

Innovation & Technology in Computer
Science Education (pp. 39 ï44). New York,
NY: ACM.

Weinberger, M. (2017). Why Amazon's Echo is
totally dominating - and what Google,
Microsoft, an d Apple have to do to catch up.

Winslow L E (1996) Programming pedagogy ï A

psychological overview. ACM SIGCSE
Bulletin, 28(3), 17 ï22.

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 12
https:/ /proc.iscap .info ; https://iscap.info

APPENDIX A

Table X: Increment in cognitive load with time

Assignment

No.

Description Concepts Tested Cognitive Load

1 Write a method printS that

takes a string as an input and
prints it to the console.

Rudimentary method

writing.

Low

2 Modify the above method
printS and enable it to take
another argument, an integer,
n . The method then prints the
string n times in a line.

Method writing, met hod
calling, method
modification.

Low

3 Reuse printS to print a user
entered string n×n times ; i.e .,
a square with each element as
the string

User input, loops, method
writing, method calling

Medium

4 Reuse printS method to print a
right angle triangle in terms of
user entered string

User input, loops, method
writing, method calling,
Problem solving

Medium

5 Reuse printS to print a pyramid
in terms of user entered string

User input, loops, method
writing, method calling,
Problem solving

High

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 13
https:/ /proc.iscap .info ; https://iscap.info

APPENDIX B

Dialogflow Messenger Integration

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 14
https:/ /proc.iscap .info ; https://iscap.info

Telegram Integration

Expanded View - CASSA

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 15
https:/ /proc.iscap .info ; https://iscap.info

APPENDIX C

https://proc.iscap/

2021 Proceedings of the EDSIG Conference ISSN 2473 -4901
Washington DC v7 n55 65

@2021 ISCAP (Information Systems and Computing Academic Professionals Page 16
https:/ /proc.iscap .info ; https://iscap.info

https://proc.iscap/

